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•j • THE CURTAIN EFFECT IN A MULTIPLE

CONVERGENCE ZONE ENVIRONMENT:

PART 1, IMPLICATIONS FOR AMBIENT NOISE.

DAVID G. BROWNING AND RAYMOND J. CHRISTIAN

NEW LONDON LABORATORY

NAVAL UNDERWATER SYSTEMS CENTER
NEW LONDON, CT 06320

VIEWGRAPH 1

It would be highly desirable to receive broad spectrum acoustic signals
over multiple convergence zone (CZ) ranges in the ocean. Unfortunately,
such desires are constrained by the realities of spreading loss and sea
water attenuation which result in what we have termed the "curtain effect"
[1]. In this paper we describe the first part of our stud-, of multiple CZ
propagation; specifically one-way (passive) propagation loss and its impact
on ambient noise levels.
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VIEWGRAPH 2. RATE OF SPREADING LOSS

The fundamental component of propagation loss is spreading loss whose
most interesting aspect is that the rate of spreading loss decreases with
range. This is especially important in multiple CZ propagation because, in a
typical deep ocean case, by the time you reach the first CZ the rate of
spreading loss has greatly decreased. Hence, further interzone spreading
loss is significantly less than the initial loss to the first CZ.
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VIEWGRAPH 3. ATTENUATION LOSS

In contrast, attenuation (which is also a rate of loss) for a given
frequency and barring any significant oceanographic changes is constant with
range [2]. It is, however, highly frequency-dependent.
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ATTENUATION vs. SPREADING LOSS
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VIEWGRAPH 4. CURTAIN EFFECT

As the rate of spreading loss decreases with range, we sooner or later
(depending on frequency) reach a range where attenuation is larger than the
rate of spreading loss. This results in the "curtain effect" shown here for
1000 Hz, which, due to increasing loss, essentially limits any further
increase in propagation range.
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VIEWGRAPH 5. COMPARISON OF RATE OF LOSS

By comparing the rates of loss and determining the crossover ranges, we
can obtain a feeling for how the attainable ranges depend on frequency.
Simply stated, the ocean is divided into a greater than 200 Hz short range
world and a less than 200 Hz long range world.
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INTERZONE PROPAGATION LOSS (dB)

Initial Loss CZ SL ±I Z I OO0HZ 1 i,.fQHi

to Zone 1 0-1 80 .07 4.5 70

1-2 3 .07 4.5 70

2-3 1.8 .07 4.5 70

3-4 1.2 .07 4.5 70

4-5 .9 .07 4.5 70
Interzone 5-6 .8 .07 4.5 70
Losses

6-7 .7 .07 4.5 70

7-8 .6 .07 4.5 70

8-9 .5 .07 4.5 70

"9-10 .4 .07 4.5 70

Total Loss (.6) (40.5) (630)

fromZonel - 1-10 10 10.6 50.5 640
out to Zone 10

70 KM CONVERGENCE ZONES, NORTH ATLANTIC

VIEWGRAPH 6. TABLE

To put this in the context of multiple CZ propagation, we have
constructed this table. Interzone losses are listed for spreading loss in
the first column. The next three columns presents attenuation at three
different frequencies out to the tenth CZ. The total for both attenuation
and spreading loss is shown on the bottom line. We have assumed typical
north Atlantic deep water conditions. Compare the spreading loss encountered
to get to the first CZ with what it takes to go all the way from the first
to the tenth. At 100 Hz attenuation is not a significant factor, while at
10,000 Hz the problem becomes meaningless because you probably can't get to
the first CZ. The important point is that in the low frequency world it
does not take a large increase in source level to overcome interzone losses
past the first CZ.
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VIEWGRAPH 7. SOURCE LEVELS

To apply this, let us consider wind-generated ambient noise in a
multiple CZ environment. Through the work of Kewley, Kuperman, Carey and
others, we have reasonable estimates of wind generated ambient noise source
levels [3]. Note that the change in levels over a reasonable range of
windspeeds is greater than the low frequency interzone losses past the first
CZ (see viewgraph 6). For example at 100 Hz, a shift from 5 to 20 knots in
windspeed increases the source level by approximately 12 dB.
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Multiple CZ Wind Speed Curves
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VIEWGRAPH 8. DUNES MODEL PREDICTIONS

Using the DUNES ambient noise prediction model [4] at 100 Hz, we can
move a patch of wind-generated ambient noise from one CZ to another to
obtain the corresponding levels from each zone back at the receiver. We are
dealing with the contribution from each CZ anO are not considering short
range noise.
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VIEWGRAPH 9. FJORD DATA (After Hollinberger and Bruder [5])

In the October issue of OCEANIC ENGINEERING, Hollinberger and Bruder
[5] present noise levels obtained in an isolated fjord. Their windspeed-
dependency is greater over the range 5 to 10 knots than are given by the
source levels developed from open ocean measurements which were used in the
DUNES Model. We have incorporated the Hollinberger and Bruder data into the
DUNES predictions.
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VIEWGRAPH 10. MODIFIED DUNES CURVES

These are the resulting modified DUNES predictions with the stronger
roll-off at low windspeeds for various CZs at 100 Hz.
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To develop what would be a meaningful
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Modified multiple CZ wind Speed Curves
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VIEWGRAPH 12. MODIFIED DUNES FIRST CZ WIND 5 KNOTS

Here we have the result with the windspeed at the first CZ being 5
knots, the other CZs having the most probable windspeed (MPWS) of 12 knots.
The ambient noise levels are for a frequency of 100 Hz. You can see that
when the windspeed at the first CZ drops below the most probable windspeed,
contribution from other CZs can dominate. The lower the local windspeed
gets, the more contributions can come in from the outer CZs. This suggests
that there will always be a threshold for low frequency noise which will be
linked to the most probable windspeed throughout the region and this may be,
at least in part, the cause of the "second mechanism" required to fit open
ocean low frequency wind generated ambient noise data.
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LOW FREQUENCY OCEAN AMBIENT NOISE: MEASUREMENTS AND THEORY
(After Piggott [6])

13 CPS 22.5 CPS 36 CPS

-20
w -25 s

n 2.10
v-- /

30 Of

S-35-n 1.96-4 a b C n=2.13-40t_

>
w 015 100 CPS 141 CPS 283 CPS
S-20

C.)w-30

o" -35 n =1.70 n = 1.53 n- 11.35

-40-
-45 -/. "" --

-50 d ' f
2 4 10 20 40 2 4 10 20 40 2 4 10 20 40

WIND SPEED (MPH)

VIEWGRAPH 13. PIGGOTT'S RESULTS

It is interesting to go back and look at Piggott's results [6] with
this idea in mind. A threshold level does seem to occur below 200 Hz,
although it should be noted that we have only demonstrated such an effect
could happen for CZ contributions. It may well be that other more local
modes may interact in the same way. For example, perhaps if the direct path
contribution was low, bottom reflected paths might dominate.
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S~ CONCLUSIONS

1. THE CURTAIN EFFECT LIMITS THE "FULL SPECTRUM" IN A
MULTIPLE CONVERGENCE ZONE ENVIRONMENT.

2. AT LOW FREQUENCIES THE INTERZONE LOSSES ARE
RELATIVELY SMALL AND CAN BE COMPENSATED BY NATURAL
SOURCE LEVEL INCREASES.

3. BELOW 200 HERTZ EXPECT A WIND GENERATED NOISE
THRESHOLD BASED ON THE MOST PROBABLE WINDSPEED FOR
THE REGION.

VIEWGRAPH 14. CONCLUSIONS

We can summarize our results as follows:

1. The curtain effect limits the "full spectrum" in a multiple
convergence zone environment.

2. At lower frequencies, the interzone losses are relatively small and
can be compensated by natural source level increases.

3. Below 200 Hz, expect a wind-generated noise threshold based on the
most probable windspeed for the region.
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